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ABSTRACT. The aim of this paper is to introduce the notion of L-fuzzy
semicompactness in L-fuzzy topological spaces, which is a generalization
of semicompactness in L-topological spaces. The union of two L-fuzzy
semicompact L-sets is L-fuzzy semicompact. The intersection of an L-
fuzzy semicompact L-set G and an L-set H with T;(H) = T is L-fuzzy
semicompact. The L-fuzzy irresolute image of an L-fuzzy semicompact
L-set is L-fuzzy semicompact. The L-fuzzy semicontinuous image of an L-
fuzzy semicompact L-set is L-fuzzy compact. The L-fuzzy strong irresolute
image of an L-fuzzy compact L-set is L-fuzzy semicompact.
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1. INTRODUCTION

Lowen’s fuzzy compactness [6, 7] is generalized into L-topological spaces by means
of open L-sets and their inequality in [10]. Following the idea of [10], the notion
of semicompactness [1] was also generalized into L-topological spaces [9]. Then a
natural problem is: Can the notion of semicompactness be defined in an L-fuzzy
topological space? In this paper, our aim is to introduce the notion of semicompact-
ness in L-fuzzy topological spaces by means of L-fuzzy semiopen operators [11].

2. PRELIMINARIES

Throughout this paper (L, \/, A, ) is a completely distributive De Morgan algebra,
X is a nonempty set and L¥ is the set of all L-fuzzy sets on X. The smallest element
and the largest element in L are denoted respectively by L and T. The smallest
element and the largest element in LX are denoted respectively by L and T. An
L-fuzzy set is briefly written as an L-set. We often do not distinguish a crisp subset
A from its characteristic function x4. The set of nonunit prime elements in L is
denoted by P(L). The set of nonzero co-prime elements in L is denoted by M (L).
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The binary relation < in L is defined as follows: for a,b € L, a < b if and only
if for every subset D C L, b < sup D always implies the existence of d € D with
a < d [2]. In a completely distributive DeMorgan algebra L, each member b is a sup
of {a € L | a < b}. In the sense of [5, [14], {a € L | a < b} is the greatest minimal
family of b, denoted by B(b), and 8*(b) = 8(b) N M(L). Moreover for b € L, define
ab)={ae L|d <V} and a*(b) = a(b) N P(L).

Definition 2.1 ([4, 13]). An L-fuzzy topology on a set X is a map 7 : LX — L
such that

(1) T(T) = T(L) = T;

(2) YU,V € LX, TUAV) > T(U) AT(V);

(3) VUj € LXa JeJ, T(\/jeJUj) 2 /\jeJ T(Uj)~
T(U) can be interpreted as the degree to which U is an open set. 7*(U) = T (U’)
will be called the degree of closedness of U. The pair (X, 7T) is called an L-fuzzy
topological space.

A mapping f: (X,7;) — (Y, 72) is said to be L-fuzzy continuous if 71 (f; (B)) >

T>(B) holds for all B € LY, where f;~ is defined by f; (B)(x) = B(f(z)) (see [8]).

Definition 2.2 ([10]). Let a € L\{T} and G € LX. A subfamily ¢/ in L¥ is said
to be
(1) an a-shading of G if for any z € X, it follows that G'(z) vV V A(z) £ a.
AelU

(2) a strong a-shading of G if A <G’(x) VARV, A(x)) £ a.
reX AelU
Definition 2.3 ([10]). Let a € L\{L} and G € LX. A subfamily P in LY is said
to be

(1) an a-remote family of G if for any z € X, it follows that G(X)A A B(x) 2

BeP
a.

(2) a strong a-remote family of G if \/ (G(x) A B(m)) 7 a.
reX BeP

Definition 2.4 ([10]). Let a € L\{L} and G € L*. A subfamily &/ in L¥ is called
(1) a Bg-cover of G if for any « € X, it follows that a € <G’(x) vV A(:E))

AelUd
(2) a strong f,-cover of G if for any = € X, it follows that

aEﬁ(/\ (G’(m)\/ \ A(x))).

zeX AeU

(3) a Qu-cover of Gifa < A <G’(:z:)\/ vV A(x)).

rzeX AcU

Definition 2.5 ([I1]). Let 7 be an L-fuzzy topology on X. For any A € LX, define
a mapping 7, : LX — L by

A=\ sTm)n AN N\ (T(D))
B<A zA<AzyLD>B
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Then 7; is called the L-fuzzy semiopen operator induced by 7', where 7;(A) can be
regarded as the degree to which A is semiopen and 7*(B) = 7;(B’) can be regarded
as the degree to which B is semiclosed.

Theorem 2.6 ([11]). Let T be an L-fuzzy topology on X and let T be the L-fuzzy
semiopen operator induced by T. Then T (A) < T,(A) for any A € LX.

Definition 2.7 ([11]). A mapping f : X — Y between two L-fuzzy topological
spaces (X,77) and (Y, 73) is called

(1) semicontinuous if T2(U) < (71)s(f; (U)) holds for any U € LY;

(2) irresolute if (73)s(U) < (71)s(f;(U)) holds for any U € LY.

Theorem 2.8 ([11]). If f: (X,71) — (Y, T2) is continuous with respect to L-fuzzy
topologies T, and T3, then f is also semicontinuous.

Theorem 2.9 ([11]). If f : (X, T1) — (Y, T2) is irresolute, then f is semicontinuous.

Definition 2.10 ([12]). Let (X, 7) be an L-fuzzy topological space. G € L¥ is said
to be L-fuzzy compact if for every family ¢ C L¥, it follows that

A T(F) A (/\ (G’(m)v \/ F(@)) <V A (G’(m)\/ \/ F(@).

Feu z€X Feu Vea) zeX Fey
3. DEFINITION AND CHARACTERIZATIONS OF L-FUZZY SEMICOMPACTNESS

Definition 3.1. Let (X,7) be an L-fuzzy topological space. G' € L¥ is said to be
L-fuzzy semicompact if for every family U C L, it follows that

N\ T.(A) A (/\ (G’(w)\/ \/ A(x))) <V A (G’(x)\/ \/ A(x)).

Aeu z€X Acu Vea) zeX A€y

By Theorem 2.6, Definition 2.10) and Definition [3.1/ we can obtain the following
result.

Theorem 3.2. L-fuzzy semicompactness implies L-fuzzy compactness.
Let (X,T) be an L-topological space. Let x7 : IX - L
1, AeT,
XT(A)_{O’ AdT.
Obviously, (X, x7) is a special L-fuzzy topological spaces. So we can easily prove
the following theorem.
Theorem 3.3. Let (X,T) be an L-topological space and G € LX. G is L-fuzzy
semicompact in (X, x7) if and only if G is fuzzy semicompact in (X,T).

From Definition 3.1/ we easily obtain the following theorem by simply using quasi-
complement ’.

Theorem 3.4. Let (X,T) be an L-fuzzy topological space. G € L is L-fuzzy
semicompact if and only if for every family P C LX it follows that

\ (T ) (\/ (Gw A F<x>)) S AV (Gw A F<z>>.

FreP reX FePpP He2(P) zeX FeH
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By Definition 3.1 and Theorem 3.4 we immediately obtain the following two
theorems.

Theorem 3.5. Let (X,7) be an L-fuzzy topological space and G € LX. Then the
following conditions are equivalent to each other.

(1) G is L-fuzzy semicompact.

(2) Foranya € M(L), each strong a-remote family P of G with N\ T;J(F) £ o
FecP
has a finite subfamily H which is a strong a-remote family of G.

(3) For anya € M(L), each strong a-remote family P of G with N TJ(F) £ d
FreP
has a finite subfamily H which is an a-remote family of G.

(4) Foranya € M(L), and any strong a-remote family P of G with N\ T, (F) £
FrepP

a’, there exists a finite subfamily H of P and b € §*(a) such that H is a
strong b-remote family of G.

(5) Foranya € M(L), and any strong a-remote family P of G with N\ T;J(F) £

FeP

a’, there exists a finite subfamily H of P and b € B*(a) such that H is a
b-remote family of G.

(6) For any a € P(L), each strong a-shading U of G with A\ T,(F) £ a has a

Feu

finite subfamily V which is a strong a-shading of G.

(7) For any a € P(L), each strong a-shading U of G with N T4(F) £ a has a
Feu
finite subfamily V which is an a-shading of G.

(8) For any a € P(L) and any strong a-shading U of G with A T5(F) € a,
Feu
there exists a finite subfamily V of U and b € a*(a) such that V is a strong

b-shading of G.
(9) For any a € P(L) and any strong a-shading U of G with N\ T4(F) £ a,
Feu

there exists a finite subfamily V of U and b € a*(a) such thatV is a b-shading
of G.

(10) For anya € M(L) and any b € 5*(a), each Q4-cover U of G with T,(F) > a
(VF € U) has a finite subfamily V which is a Qy-cover of G.

(11) For anya € M(L) and any b € §*(a), each Qq-cover U of G with T4(F) > a
(VF € U) has a finite subfamily V which is a strong By-cover of G.

(12) For anya € M(L) and any b € 5*(a), each Q4-cover U of G with T,(F) > a
(VF € U) has a finite subfamily V which is a By-cover of G.

Theorem 3.6. Let (X, T) be an L-fuzzy topological space and G € L. If B(cAd) =
B(c) N B(d) (Ve,d € L), then the following conditions are equivalent to each other.

(1) G is L-fuzzy semicompact.

(2) For any a € M(L), each strong B4-cover U of G with a € ﬁ( A T(F))
Freu
has a finite subfamily V which is a strong Bq-cover of G.

(3) For any a € M(L), each strong Bq-cover U of G with a € ﬁ( A T(F))
Freu
has a finite subfamily V which is a Bq-cover of G.
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(4) For any a € M(L) and any strong Bq-cover U of G with a € < A T(F)) ,
Feu

there exists a finite subfamily V of U and b € M (L) with a € 8*(b) such that
V is a strong By-cover of G.

(5) For anya € M(L) and any strong B,-cover U of G with a € < A T(F)) ,
Feu

there exists a finite subfamily V of U and b € M (L) with a € 8*(b) such that
V is a PBy-cover of G.

4. PROPERTIES OF L-FUZZY SEMICOMPACTNESS

Theorem 4.1. Let (X,7T) be an L-fuzzy topological space and G € LX. If G is
L-fuzzy semicompact, then for each H € LX with T}(H) = T, G A H is L-fuzzy
semicompact.

Proof. The L-fuzzy semicompactness of G A H can be proved from the following
fact.

V (T(F) v (\/ ((GAH)(JJ)A A F(ﬂf)))

FeP zeX FeP

=V @@)v|V|caor A Fl@

FePU{H) veX FePU{H)

> AV (G(m)/\ A F(@)

Fe2(PU{H}) zeX FeF
= ANV <G(x)/\H(x)/\ A F(x)).
Fe2(P) zeX FeF

O

Theorem 4.2. Let (X,T) be an L-fuzzy topological space and G, H € LX. If both
G and H are L-fuzzy semicompact, then so is GV H

Proof. This can be proved from the following fact.

V (THE) v (\/ ((G\/H)(SEM A F(ﬂf)))

FepP rxeX FepP
_\ (@) (\/ (Gw A F<x>)) y (\/ (mm A F<x>))
FePp zeX FeP zeX FePpP

Y

AV (G(:c)/\ A F(@)v AV (H(m)/\ A\ F(:@)

0,€2(P) z€X FeQ, 0,€2(P) z€X FeQ,

AV <(GvH>(a:)A A F(x)).

Qe2(P) xeX FeQ

v
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Theorem 4.3. Let (X, T1), (Y,7z) be two L-fuzzy topological spaces, and f : (X,7;) —
(Y, T2) be an L-fuzzy irresolute mapping. If G € LX is L-fuzzy semicompact in
(X,Th), then so is f;7(G) in (Y, 73).

Proof. This can be proved from the following fact.

V (@@ vV (J‘F(G)(y)A A F(@/))

FePpP yey FePpP

> \/ ()i(fi (7)) v <\/ (G(x)A A f;(F)(x)))
FePpP rxeX FeP

> AV (G(m)A A ff(F)(x))
FeaP) zeX FeF

> AV (J”E(G)(y)A N F(y)>~
Fe2(P) yeY FeF

Analogously we can obtain the following result.

Theorem 4.4. Let (X,7;), (Y, Tz) be two L-fuzzy topological spaces, and f : (X,T1) —
(Y, T3) be an L-fuzzy semicontinuous mapping. If G € L™ is L-fuzzy semicompact
in (X,T1), then ;7 (G) is L-fuzzy compact in (Y, Tz).

Definition 4.5. Let (X,77) and (Y, 72) be two L-fuzzy topological spaces. A map-
ping f: (X, T1) — (Y, T2) is called strongly irresolute if (72)s(U) < T1(f; (U)) holds
for any U € LY.

It is obvious that a strongly irresolute mapping is irresolute. Analogously we have
the following result.

Theorem 4.6. Let (X, 7;), (Y, Tz) be two L-fuzzy topological spaces, and f : (X, T1) —
(Y, T3) be an L-fuzzy strong irresolute mapping. If G € L is L-fuzzy compact in
(X,Th), then fi7(G) is L-fuzzy semicompact in (Y, Tz).
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