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Abstract. The aim of this paper is to introduce the notion of L-fuzzy
semicompactness in L-fuzzy topological spaces, which is a generalization
of semicompactness in L-topological spaces. The union of two L-fuzzy
semicompact L-sets is L-fuzzy semicompact. The intersection of an L-
fuzzy semicompact L-set G and an L-set H with T ∗s (H) = > is L-fuzzy
semicompact. The L-fuzzy irresolute image of an L-fuzzy semicompact
L-set is L-fuzzy semicompact. The L-fuzzy semicontinuous image of an L-
fuzzy semicompact L-set is L-fuzzy compact. The L-fuzzy strong irresolute
image of an L-fuzzy compact L-set is L-fuzzy semicompact.
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1. Introduction

Lowen’s fuzzy compactness [6, 7] is generalized into L-topological spaces by means
of open L-sets and their inequality in [10]. Following the idea of [10], the notion
of semicompactness [1] was also generalized into L-topological spaces [9]. Then a
natural problem is: Can the notion of semicompactness be defined in an L-fuzzy
topological space? In this paper, our aim is to introduce the notion of semicompact-
ness in L-fuzzy topological spaces by means of L-fuzzy semiopen operators [11].

2. Preliminaries

Throughout this paper (L,
∨

,
∧

,′ ) is a completely distributive De Morgan algebra,
X is a nonempty set and LX is the set of all L-fuzzy sets on X. The smallest element
and the largest element in L are denoted respectively by ⊥ and >. The smallest
element and the largest element in LX are denoted respectively by ⊥ and >. An
L-fuzzy set is briefly written as an L-set. We often do not distinguish a crisp subset
A from its characteristic function χA. The set of nonunit prime elements in L is
denoted by P (L). The set of nonzero co-prime elements in L is denoted by M(L).
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The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b if and only
if for every subset D ⊆ L, b ≤ sup D always implies the existence of d ∈ D with
a ≤ d [2]. In a completely distributive DeMorgan algebra L, each member b is a sup
of {a ∈ L | a ≺ b}. In the sense of [5, 14], {a ∈ L | a ≺ b} is the greatest minimal
family of b, denoted by β(b), and β∗(b) = β(b) ∩M(L). Moreover for b ∈ L, define
α(b) = {a ∈ L | a′ ≺ b′} and α∗(b) = α(b) ∩ P (L).

Definition 2.1 ([4, 13]). An L-fuzzy topology on a set X is a map T : LX → L
such that

(1) T (>) = T (⊥) = >;
(2) ∀U, V ∈ LX , T (U ∧ V ) ≥ T (U) ∧ T (V );
(3) ∀Uj ∈ LX , j ∈ J, T (

∨
j∈J Uj) ≥

∧
j∈J T (Uj).

T (U) can be interpreted as the degree to which U is an open set. T ∗(U) = T (U ′)
will be called the degree of closedness of U . The pair (X, T ) is called an L-fuzzy
topological space.

A mapping f : (X, T1) → (Y, T2) is said to be L-fuzzy continuous if T1(f←L (B)) ≥
T2(B) holds for all B ∈ LY , where f←L is defined by f←L (B)(x) = B(f(x)) (see [8]).

Definition 2.2 ([10]). Let a ∈ L\{>} and G ∈ LX . A subfamily U in LX is said
to be

(1) an a-shading of G if for any x ∈ X, it follows that G′(x) ∨ ∨
A∈U

A(x) 6≤ a.

(2) a strong a-shading of G if
∧

x∈X

(
G′(x) ∨ ∨

A∈U
A(x)

)
6≤ a.

Definition 2.3 ([10]). Let a ∈ L\{⊥} and G ∈ LX . A subfamily P in LX is said
to be

(1) an a-remote family of G if for any x ∈ X, it follows that G(X)∧ ∧
B∈P

B(x) 6≥
a.

(2) a strong a-remote family of G if
∨

x∈X

(
G(x) ∧ ∧

B∈P
B(x)

)
6≥ a.

Definition 2.4 ([10]). Let a ∈ L\{⊥} and G ∈ LX . A subfamily U in LX is called

(1) a βa-cover of G if for any x ∈ X, it follows that a ∈ β

(
G′(x) ∨ ∨

A∈U
A(x)

)
.

(2) a strong βa-cover of G if for any x ∈ X, it follows that

a ∈ β

( ∧

x∈X

(
G′(x) ∨

∨

A∈U
A(x)

))
.

(3) a Qa-cover of G if a ≤ ∧
x∈X

(
G′(x) ∨ ∨

A∈U
A(x)

)
.

Definition 2.5 ([11]). Let T be an L-fuzzy topology on X. For any A ∈ LX , define
a mapping Ts : LX → L by

Ts(A) =
∨

B≤A



T (B) ∧

∧

xλ≺A

∧

xλ 6≤D≥B

(T (D′))′


 .
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Then Ts is called the L-fuzzy semiopen operator induced by T , where Ts(A) can be
regarded as the degree to which A is semiopen and T ∗s (B) = Ts(B′) can be regarded
as the degree to which B is semiclosed.

Theorem 2.6 ([11]). Let T be an L-fuzzy topology on X and let Ts be the L-fuzzy
semiopen operator induced by T . Then T (A) ≤ Ts(A) for any A ∈ LX .

Definition 2.7 ([11]). A mapping f : X → Y between two L-fuzzy topological
spaces (X, T1) and (Y, T2) is called

(1) semicontinuous if T2(U) ≤ (T1)s(f←L (U)) holds for any U ∈ LY ;
(2) irresolute if (T2)s(U) ≤ (T1)s(f←L (U)) holds for any U ∈ LY .

Theorem 2.8 ([11]). If f : (X, T1) → (Y, T2) is continuous with respect to L-fuzzy
topologies T1 and T2, then f is also semicontinuous.

Theorem 2.9 ([11]). If f : (X, T1) → (Y, T2) is irresolute, then f is semicontinuous.

Definition 2.10 ([12]). Let (X, T ) be an L-fuzzy topological space. G ∈ LX is said
to be L-fuzzy compact if for every family U ⊆ LX , it follows that

∧

F∈U
T (F ) ∧

( ∧

x∈X

(
G′(x) ∨

∨

F∈U
F (x)

))
≤

∨

V∈2(U)

∧

x∈X

(
G′(x) ∨

∨

F∈V
F (x)

)
.

3. Definition and characterizations of L-fuzzy semicompactness

Definition 3.1. Let (X, T ) be an L-fuzzy topological space. G ∈ LX is said to be
L-fuzzy semicompact if for every family U ⊆ LX , it follows that

∧

A∈U
Ts(A) ∧

( ∧

x∈X

(
G′(x) ∨

∨

A∈U
A(x)

))
≤

∨

V∈2(U)

∧

x∈X

(
G′(x) ∨

∨

A∈V
A(x)

)
.

By Theorem 2.6, Definition 2.10 and Definition 3.1 we can obtain the following
result.

Theorem 3.2. L-fuzzy semicompactness implies L-fuzzy compactness.

Let (X, T ) be an L-topological space. Let χT : LX → L

χT (A) =
{

1, A ∈ T ,
0, A 6∈ T .

Obviously, (X, χT ) is a special L-fuzzy topological spaces. So we can easily prove
the following theorem.

Theorem 3.3. Let (X, T ) be an L-topological space and G ∈ LX . G is L-fuzzy
semicompact in (X, χT ) if and only if G is fuzzy semicompact in (X, T ).

From Definition 3.1 we easily obtain the following theorem by simply using quasi-
complement ′.

Theorem 3.4. Let (X, T ) be an L-fuzzy topological space. G ∈ LX is L-fuzzy
semicompact if and only if for every family P ⊆ LX it follows that

∨

F∈P
(T ∗s (F ))′ ∨

( ∨

x∈X

(
G(x) ∧

∧

F∈P
F (x)

))
≥

∧

H∈2(P)

∨

x∈X

(
G(x) ∧

∧

F∈H
F (x)

)
.
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By Definition 3.1 and Theorem 3.4 we immediately obtain the following two
theorems.

Theorem 3.5. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . Then the
following conditions are equivalent to each other.

(1) G is L-fuzzy semicompact.
(2) For any a ∈ M(L), each strong a-remote family P of G with

∧
F∈P

T ∗s (F ) 6≤ a′

has a finite subfamily H which is a strong a-remote family of G.
(3) For any a ∈ M(L), each strong a-remote family P of G with

∧
F∈P

T ∗s (F ) 6≤ a′

has a finite subfamily H which is an a-remote family of G.
(4) For any a ∈ M(L), and any strong a-remote family P of G with

∧
F∈P

T ∗s (F ) 6≤
a′, there exists a finite subfamily H of P and b ∈ β∗(a) such that H is a
strong b-remote family of G.

(5) For any a ∈ M(L), and any strong a-remote family P of G with
∧

F∈P
T ∗s (F ) 6≤

a′, there exists a finite subfamily H of P and b ∈ β∗(a) such that H is a
b-remote family of G.

(6) For any a ∈ P (L), each strong a-shading U of G with
∧

F∈U
Ts(F ) 6≤ a has a

finite subfamily V which is a strong a-shading of G.
(7) For any a ∈ P (L), each strong a-shading U of G with

∧
F∈U

Ts(F ) 6≤ a has a

finite subfamily V which is an a-shading of G.
(8) For any a ∈ P (L) and any strong a-shading U of G with

∧
F∈U

Ts(F ) 6≤ a,

there exists a finite subfamily V of U and b ∈ α∗(a) such that V is a strong
b-shading of G.

(9) For any a ∈ P (L) and any strong a-shading U of G with
∧

F∈U
Ts(F ) 6≤ a,

there exists a finite subfamily V of U and b ∈ α∗(a) such that V is a b-shading
of G.

(10) For any a ∈ M(L) and any b ∈ β∗(a), each Qa-cover U of G with Ts(F ) ≥ a
(∀F ∈ U) has a finite subfamily V which is a Qb-cover of G.

(11) For any a ∈ M(L) and any b ∈ β∗(a), each Qa-cover U of G with Ts(F ) ≥ a
(∀F ∈ U) has a finite subfamily V which is a strong βb-cover of G.

(12) For any a ∈ M(L) and any b ∈ β∗(a), each Qa-cover U of G with Ts(F ) ≥ a
(∀F ∈ U) has a finite subfamily V which is a βb-cover of G.

Theorem 3.6. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . If β(c∧d) =
β(c) ∩ β(d) (∀c, d ∈ L), then the following conditions are equivalent to each other.

(1) G is L-fuzzy semicompact.

(2) For any a ∈ M(L), each strong βa-cover U of G with a ∈ β

( ∧
F∈U

T (F )
)

has a finite subfamily V which is a strong βa-cover of G.

(3) For any a ∈ M(L), each strong βa-cover U of G with a ∈ β

( ∧
F∈U

T (F )
)

has a finite subfamily V which is a βa-cover of G.
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(4) For any a ∈ M(L) and any strong βa-cover U of G with a ∈ β

( ∧
F∈U

T (F )
)

,

there exists a finite subfamily V of U and b ∈ M(L) with a ∈ β∗(b) such that
V is a strong βb-cover of G.

(5) For any a ∈ M(L) and any strong βa-cover U of G with a ∈ β

( ∧
F∈U

T (F )
)

,

there exists a finite subfamily V of U and b ∈ M(L) with a ∈ β∗(b) such that
V is a βb-cover of G.

4. Properties of L-fuzzy semicompactness

Theorem 4.1. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . If G is
L-fuzzy semicompact, then for each H ∈ LX with T ∗s (H) = >, G ∧ H is L-fuzzy
semicompact.

Proof. The L-fuzzy semicompactness of G ∧ H can be proved from the following
fact.

∨

F∈P
(T ∗s (F ))′ ∨

( ∨

x∈X

(
(G ∧H)(x) ∧

∧

F∈P
F (x)

))

=
∨

F∈P⋃{H}
(T ∗s (F ))′ ∨


 ∨

x∈X


G(x) ∧

∧

F∈P⋃{H}
F (x)







≥
∧

F∈2(P∪{H})

∨

x∈X

(
G(x) ∧

∧

F∈F
F (x)

)

=
∧

F∈2(P)

∨

x∈X

(
G(x) ∧H(x) ∧

∧

F∈F
F (x)

)
.

¤

Theorem 4.2. Let (X, T ) be an L-fuzzy topological space and G,H ∈ LX . If both
G and H are L-fuzzy semicompact, then so is G ∨H

Proof. This can be proved from the following fact.

∨

F∈P
(T ∗s (F ))′ ∨

( ∨

x∈X

(
(G ∨H)(x) ∧

∧

F∈P
F (x)

))

=
∨

F∈P
(T ∗s (F ))′ ∨

( ∨

x∈X

(
G(x) ∧

∧

F∈P
F (x)

))
∨

( ∨

x∈X

(
H(x) ∧

∧

F∈P
F (x)

))

≥
∧

Q1∈2(P)

∨

x∈X

(
G(x) ∧

∧

F∈Q1

F (x)

)
∨

∧

Q2∈2(P)

∨

x∈X

(
H(x) ∧

∧

F∈Q2

F (x)

)

≥
∧

Q∈2(P)

∨

x∈X

(
(G ∨H)(x) ∧

∧

F∈Q
F (x)

)
.

¤
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Theorem 4.3. Let (X, T1), (Y, T2) be two L-fuzzy topological spaces, and f : (X, T1) →
(Y, T2) be an L-fuzzy irresolute mapping. If G ∈ LX is L-fuzzy semicompact in
(X, T1), then so is f→L (G) in (Y, T2).

Proof. This can be proved from the following fact.

∨

F∈P
((T2)∗s(F ))′ ∨


 ∨

y∈Y

(
f→L (G)(y) ∧

∧

F∈P
F (y)

)


≥
∨

F∈P
((T1)∗s(f

←
L (F )))′ ∨

( ∨

x∈X

(
G(x) ∧

∧

F∈P
f←L (F )(x)

))

≥
∧

F∈2(P)

∨

x∈X

(
G(x) ∧

∧

F∈F
f←L (F )(x)

)

≥
∧

F∈2(P)

∨

y∈Y

(
f→L (G)(y) ∧

∧

F∈F
F (y)

)
.

¤
Analogously we can obtain the following result.

Theorem 4.4. Let (X, T1), (Y, T2) be two L-fuzzy topological spaces, and f : (X, T1) →
(Y, T2) be an L-fuzzy semicontinuous mapping. If G ∈ LX is L-fuzzy semicompact
in (X, T1), then f→L (G) is L-fuzzy compact in (Y, T2).

Definition 4.5. Let (X, T1) and (Y, T2) be two L-fuzzy topological spaces. A map-
ping f : (X, T1) → (Y, T2) is called strongly irresolute if (T2)s(U) ≤ T1(f←L (U)) holds
for any U ∈ LY .

It is obvious that a strongly irresolute mapping is irresolute. Analogously we have
the following result.

Theorem 4.6. Let (X, T1), (Y, T2) be two L-fuzzy topological spaces, and f : (X, T1) →
(Y, T2) be an L-fuzzy strong irresolute mapping. If G ∈ LX is L-fuzzy compact in
(X, T1), then f→L (G) is L-fuzzy semicompact in (Y, T2).
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